
Charm/Charm++/Converse Installation and Usage

Parallel Programming Laboratory
Department of Computer Science

University of Illinois at Urbana–Champaign

August 31, 2000

1

1 INTRODUCTION 1

1 Introduction

In this manual, we describe how to install Charm++ and Converse, how to compile and execute
programs, and the available command line options. We also describe various queueing and load
balancing strategies, and the various modes of execution of Converse and Charm++ programs.

2 INSTALLING CONVERSE, CHARM, AND CHARM++ 2

2 Installing Converse, Charm, and Charm++

The three programming systems are distributed as a single package — one always installs all three.
They will all be installed in a single directory which, for lack of a better term, we will call the
“charm” directory. It would be typical to choose /usr/local/charm as the location for the charm
directory, although any location will do. Our explanation of the installation process will assume
that /usr/local/charm is to be the location of the charm directory, if not, you must mentally
translate.

Download the tar-file file appropriate to your machine. For example, if you are installing the version
of charm for networks of Sun workstations running Solaris, download net-sol.tar.Z from PPL’s
website (preferred) http://charm.cs.uiuc.edu/ or using anonymous FTP:

% ftp a.cs.uiuc.edu
Connected to a.cs.uiuc.edu.
220 a.cs.uiuc.edu FTP server ready.
Name: anonymous
331 Guest login ok, send your complete e-mail address as password.
Password: jyelon@cs.uiuc.edu
230-
230- Welcome to the University of Illinois at Urbana-Champaign,
230- Dept. of Computer Science FTP server.
230-
230 Guest login ok, access restrictions apply.
ftp> cd pub/research-groups/CHARM/CHARM.5.0
250 CWD command successful.
ftp> binary
200 Type set to I.
ftp> get net-sol.tar.gz
200 PORT command successful.
150 Opening BINARY mode data connection for net-sol.tar.gz (648211 bytes).
226 Transfer complete.
local: net-sol.tar.gz remote: net-sol.tar.gz
648211 bytes received in 38 seconds (17 Kbytes/s)
ftp> quit

Now that you have downloaded it, you are ready to install it: uncompress it, untar it, and move
the directory thereby created to /usr/local/charm:

% gunzip net-sol.tar.gz
% tar xf net-sol.tar
% mv net-sol/* /usr/local/charm

You are almost ready to go. The last thing you need to do is put the charm binaries in your path.
There are two acceptable ways to do this. The first is to simply reset your path:

% setenv PATH /usr/local/charm/bin:$PATH

2 INSTALLING CONVERSE, CHARM, AND CHARM++ 3

The second is to install charmc in a common directory available to all users of your machine, such
as /usr/local/bin. DO NOT move or copy charmc: If you do, it will cease to function correctly.
The only reliable way to put charmc in a common directory is to symbolically link it:

% ln -s /usr/local/charm/bin/charmc /usr/local/bin/charmc

The programming systems, converse and charm++, are probably ready to go. However, there is one
possible situation that they may not be. If your parallel machine has a separate “host” computer
on which you do compilation, and if your “host” computer is of a type different from the one we
anticipated, then some of the binaries may be compiled for the wrong kind of CPU. To correct this
situation, you may need to rebuild the cpm, charm++, sdag, and IDL compilers:

% cd /usr/local/charm/src
% make all

This should complete the installation process. You are ready to test converse and charm++.
However, there are a few things to attend to before you start using them on a regular basis. These
are security issues and disk space consumption.

2.1 Security Issues

On most computers, charm programs are simple binaries, and they pose no more security issues
than any other program would. The exceptions to this rule are the network versions net-*. This
section only applies to users of the networked versions, all other users may skip it.

The network versions utilize many unix processes communicating with each other via UDP. No
attempt is currently being made to filter out unauthorized packets. Therefore, it is theoretically
possible to mount a security attack by sending UDP packets to an executing converse or charm++
program’s sockets.

The second security issue associated with networked programs is associated with the fact that we,
the charm developers, need evidence that our tools are being used. (Such evidence is useful in con-
vincing funding agencies to continue to support our work.) To this end, we have inserted code in the
network conv-host program (described later) to notify us that our software is being used. Imple-
mentationally speaking, the conv-host program sends a single UDP packet to charm.cs.uiuc.edu.
This data is put to one use only: it is gathered into tables recording the internet domains in which
our software is being used, the number of individuals at each internet domain, and the frequency
with which it is used.

We recognize that some users may have objections to our notification code. Therefore, we have
provided a second copy of the conv-host program with the notification code removed. If you look
within the charm bin directory, you will find these programs:

% cd /usr/local/charm/bin
% ls conv-host*
conv-host
conv-host.notify
conv-host.silent

2 INSTALLING CONVERSE, CHARM, AND CHARM++ 4

The program conv-host.silent has the notification code removed. To permanently deactivate
notification, you may use the version without the notification code:

% cd /usr/local/charm/bin
% cp conv-host.silent conv-host

Although versions for some other machines contain programs named conv-host.notify and conv-host.silent,
they never actually notify us. The existence of the extra files is just to make our compilation scripts
more consistent across versions. The only versions that ever notify us are the network versions.

2.2 Reducing disk usage

This section describes how you may delete parts of the distribution to save disk space.

The charm directory contains a collection of example-programs and test-programs. These may be
deleted with no other effects:

% rm -r /usr/local/charm/pgms

The source code for the translators may be deleted, if you know the binaries are operational:

% rm -r /usr/local/charm/src

You may delete the programs conv-host-notify and conv-host-silent, although please read
the section on security first.

Finally, you may strip all the binaries in /usr/local/charm/bin, if we have not already done so.

2.3 Using more than one version of Charm on the same Machine

It is common to wish to install more than one version of charm on the same machine. For example,
we often use the uniprocessor version for debugging our programs (it supports gdb in a simple way),
and then we switch to the networked version to run our programs in parallel.

To do this, you will need more than one charm directory. For example, we use /usr/local/charm.uth
and /usr/local/charm.net. Simply install the versions independently, one at a time. All charm
directories should be in the same parent directory.

Each version contains the charmc script. Which charmc you use to compile your programs deter-
mines which behavior the program will exhibit. For example, if you install a uniprocessor version
in /usr/local/charm.uth and a networked version in /usr/local/charm.net, and if you compile
using /usr/local/charm.uth/bin/charmc, then your programs will be uniprocessor programs.

The exception to this rule is if you use the -machine option of charmc. -machine causes charm to
look for another installed charm directory with the specified name. For example, if you installed
/usr/local/charm.uth and /usr/local/charm.net as described above, you could specify:

2 INSTALLING CONVERSE, CHARM, AND CHARM++ 5

% /usr/local/charm.net/bin/charmc -machine charm.uth myprog.C

Even though you are running the charmc script from the network version, it will produce unipro-
cessor binaries, since you told it explicitly to use that version.

3 COMPILING CONVERSE, CHARM, AND CHARM++ PROGRAMS 6

3 Compiling Converse, Charm, and Charm++ Programs

The charmc program standardizes compiling and linking procedures among various machines and
operating systems. The word “charmc” is slightly misleading, this is a general-purpose tool for
compiling and linking, not restricted to charm programs at all.

Charmc can perform the following tasks. The (simplified) syntax for each of these modes is shown.
Caution: in reality, one almost always has to add some command-line options in addition to the
simplified syntax shown below. The options are described next.

* Compile C charmc -o pgm.o pgm.c
* Compile C++ charmc -o pgm.o pgm.C
* Link charmc -o pgm obj1.o obj2.o obj3.o...
* Compile + Link charmc -o pgm src1.c src2.ci src3.C
* Create Library charmc -o lib.a obj1.o obj2.o obj3.o...
* CPM preprocessing charmc -gen-cpm file.c
* Translate Charm++ Interface File charmc file.ci

Charmc has been given data on how to invoke the compilers on each different platform. This
data is in a file named conv-mach.csh, which can be found in the same directory where charmc
resides. Local modifications to the commands or options charmc uses may usually be accomplished
by editing conv-mach.csh.

Charmc automatically figures out where the charm lib and include directories are — at no point do
you have to configure this information. However, the code that finds the lib and include directories
can be confused if you remove charmc from its normal directory, or rearrange the directory tree.
Thus, the files in the charm distribution must be left where they are, relative to each other. Use
symbolic links if you want to put a copy of charmc into a local bin directory.

The following command-line options are available to users of charmc:

-o output-file: Output file name. Note: charmc only ever produces one output file at a time.
Because of this, you cannot compile multiple source files at once, unless you then link or
archive them into a single output-file. If exactly one source-file is specified, then an output
file will be selected by default using the obvious rule (eg, if the input file if pgm.c, the output
file is pgm.o). If multiple input files are specified, you must manually specify the name of the
output file, which must be a library or executable.

-c: Ignored. There for compatibility with cc.

-D*: Defines preprocessor variables from the command line at compile time.

-I: Add a directory to the search path for preprocessor include files.

-g: Causes compiled files to include debugging information.

-L*: Add a directory to the search path for libraries selected by the -l command.

-l*: Specifies libraries to link in.

3 COMPILING CONVERSE, CHARM, AND CHARM++ PROGRAMS 7

-O: Causes files to be compiled with maximum optimization.

-NO: If this follows -O on the command line, it turns optimization back off. This is just a conve-
nience for simple-minded makefiles.

-s: Strip the executable of debugging symbols. Only meaningful when producing an executable.

-save: Intermediate files produced by the Charm or Charm++ translator are saved.

-verbose: All commands executed by charmc are echoed to stdout.

-seq: Indicates that we’re compiling sequential code. On parallel machines with front ends, this
option also means that the code is for the front end. This option is only valid with C and
C++ files.

-machine machine-type: If more than one version of converse/charm/charm++ has been in-
stalled, this option allows selection of versions other than the default. The default machine-
type is the version in which the charmc being run resides. See the previous chapter on
installing charm.

-use-fastest-cc: Some environments provide more than one C compiler (cc and gcc, for example).
Usually, charmc prefers the less buggy of the two. This option causes charmc to switch to
the most aggressive compiler, regardless of whether it’s buggy or not.

-use-reliable-cc: Some environments provide more than one C compiler (cc and gcc, for exam-
ple). Usually, charmc prefers the less buggy of the two, but not always. This option causes
charmc to switch to the most reliable compiler, regardless of whether it produces slow code
or not.

-language {converse|charm++|sdag|idl}: When linking with charmc, one must specify the
“language”. This is just a way to help charmc include the right libraries. Pick the “lan-
guage” according to this table:

• Charm++ if your program includes Charm++, Charm, C++, and C.

• Converse if your program includes C or C++.

• sdag if your program includes structured dagger.

• idl if your program includes IDL bindings for Charm++.

-balance load-balance-strategy: When linking any Converse program (including any Charm++,
sdag or IDL program), one must include a seed load-balancing library. There are currently
three to choose from: rand, test, and graph are supported. Default is -balance rand.

-tracemode tracing-mode: Selects the desired degree of tracing for Charm and Charm++ pro-
grams. See the Charm manual and the Projections and SummaryTool manuals for more
information. Currently supported modes are none, summary, and projections. Default is
-tracemode none.

-c++ C++ compiler: Forces the specified C++ compiler to be used.

-cc C-compiler: Forces the specified C compiler to be used.

-cp copy-file: Creates a copy of the output file in copy-file.

3 COMPILING CONVERSE, CHARM, AND CHARM++ PROGRAMS 8

-cpp-option options: Options passed to the C pre-processor.

-ld linker: Use this option only when compiling programs that do not include C++ modules.
Forces charmc to use the specified linker.

-ld++ linker: Use this option only when compiling programs that include C++ modules. Forces
charmc to use the specified linker.

-ld++-option options: Options passed to the linker for -language charm++.

-ld-option options: Options passed to the linker for -language charm.

-ldro-option options: Options passes to the linker when linking .o files.

-queue queueing strategy: Currently ignored.

4 EXECUTING CONVERSE/CHARM/CHARM++ PROGRAMS 9

4 Executing Converse/Charm/Charm++ Programs

The Charm linker produces one executable file. On machines with a host (such as a network
of workstations), a link to the proper host program conv-host is created in the user program
directory. Sample execution examples are given below (the executable is called pgm). Exact details
will differ from site to site. The list of Charm command line options is in Section 4.2.

• ASCI Red:

yod -sz 4 pgm

runs pgm on four processors.

• Cray T3E:

mpprun -n 4 pgm

runs pgm on four processors.

• SGI Origin2000 (origin-mpi):

mpirun -np 4 pgm

runs pgm on four processors.

• SGI Origin2000 (origin2000 or origin-pthreads):

pgm +p4

runs pgm on four processors.

• Network of workstations:

conv-host pgm +p4

executes pgm on 4 nodes. In a network environment, Charm must be able to locate the
directory of the executable. If all workstations share a common file name space this is trivial.
If they don’t, Charm will attempt to find the executable in a directory with the same path
from the $HOME directory. Pathname resolution is performed as follows:

1. The system computes the absolute path of pgm.

2. If the absolute path starts with the equivalent of $HOME or the current working
directory, the beginning part of the path is replaced with the environment variable
$HOME or the current working directory. However, if exec home is specified in the
nodes file (see below), the beginning part of the path is replaced with exec home.

3. The system tries to locate this program (with modified pathname and appended exten-
sion if specified) on all nodes.

4 EXECUTING CONVERSE/CHARM/CHARM++ PROGRAMS 10

The list of nodes must be specified in a file. The format of this file allows you to define groups
of machines, giving each group a name. Each line of the nodes file is a command. The most
important command is:

host <hostname> <qualifiers>

which specifies a host. The other commands are qualifiers: they modify the properties of all
hosts that follow them. The qualifiers are:

group <groupname> - subsequent hosts are members of specified group
login <login> - subsequent hosts use the specified login
shell <shell> - subsequent hosts use the specified remote shell
setup <cmd> - subsequent hosts should execute cmd
home <dir> - subsequent hosts should find programs under dir
cpus <n> - subsequent hosts should use N light-weight processes
speed <s> - subsequent hosts have relative speed rating
ext <extn> - subsequent hosts should append extn to the pgm name

Note: By default, conv-host uses a remote shell “rsh” to spawn node processes on the remote
hosts. The shell qualifier can be used to override it with say, “ssh”. One can set the CONV RSH
environment variable or use conv-host option ++remote-shell to override the default remote
shell for all hosts with unspecified shell qualifier.

All qualifiers accept “*” as an argument, this resets the modifier to its default value. Note
that currently, the passwd, cpus, and speed factors are ignored. Inline qualifiers are also
allowed:

host beauty ++cpus 2 ++shell ssh

Except for “group”, every other qualifier can be inlined, with the restriction that if the “setup”
qualifier is inlined, it should be the last qualifier on the “host” or “group” statement line.

Here is a simple nodes file:

group kale-sun ++cpus 1
host charm.cs.uiuc.edu ++shell ssh
host dp.cs.uiuc.edu
host grace.cs.uiuc.edu
host dagger.cs.uiuc.edu

group kale-sol
host beauty.cs.uiuc.edu ++cpus 2

group main
host localhost

This defines three groups of machines: group kale-sun, group kale-sol, and group main. The
++nodegroup option is used to specify which group of machines to use. Note that there is
wraparound: if you specify more nodes than there are hosts in the group, it will reuse hosts.
Thus,

4 EXECUTING CONVERSE/CHARM/CHARM++ PROGRAMS 11

conv-host pgm ++nodegroup kale-sun +p6

uses hosts (charm, dp, grace, dagger, charm, dp) respectively as nodes (0, 1, 2, 3, 4, 5).

If you don’t specify a ++nodegroup, the default is ++nodegroup main. Thus, if one specifies

conv-host pgm +p4

it will use “localhost” four times. “localhost” is a Unix trick; it always find a name for
whatever machine you’re on.

Since the new nodes file is incompatible with the old nodes file, it has been renamed. It now
is called “.nodelist”, and all the options and environment variables pertaining to it have also
been renamed NODELIST.

The user is required to set up remote login permissions on all nodes using the “.rhosts” file
in the home directory if “rsh” is used for remote login into the hosts. If “ssh” is used, the
user will have to setup password-less login to remote hosts either using “.shosts” file, or using
RSA authentication based on a key-pair and adding public keys to “.ssh/authorized keys”
file. See “ssh” documentation for more information.

Note that the Charm linker will provide the correct executable. The user, however, needs to know
how programs are run for the particular machine.

4.1 Running with the simulator

Converse provides a simple parallel machine simulator for developing and debugging purposes. It
simulates a message passing system composed of a collection of processing nodes connected with
a communication network. Each node is composed of an application processor, local memory, and
a communication coprocessor. The simulator is a beta version, and it is not yet proven that the
simulator timers for performance measurements produce realistic results.

In order to run Charm and Charm++ programs with the simulator:

• prepare a configuration file as described below

• to run, type pgm +pN (and possibly other runtime options) where N is the number of proces-
sors.

Currently only Charm and Charm++ programs can take advantage of the simulator features. In
the future, a method to allow any Converse based program to use the simulator features will be
devised.

The basic task of the simulator is to manage the message passing obeying various machine and
network parameters. A message experiences delays in various components of the machine. These
include: 1) sender application processor, 2) sender communication coprocesssor, 3) network, 4)
receiver communication processor, and 5) receiver application processor. Each component of the
delayed is modelled by the widely used formula α+nβ where α is the startup cost, and β is the cost
per byte. In addition to message delay parameters, there are others related to the network capacity

4 EXECUTING CONVERSE/CHARM/CHARM++ PROGRAMS 12

and random variations in network delays. These parameters are specified in a configuration file
named ”sim.param” in the directory of the user program. If the simulator can’t find this file, it
assumes default values (mostly zero latencies). Figure 1 lists a sample configuration. The lines
starting with the # sign are treated as comments. Each line contains a keyword followed by some
numbers. The explanation of each keyword is given below:

cpu recv cost α and β values for the software cost of a message-receive at the application proces-
sor.

cpu send cost α and β values for the software cost of a message-send at the application processor.

rcp cost α and β values for a message-receive at the communication processor.

scp cost α and β values for a message-send at the communication processor.

net cost α and β values for a message-send in the netowrk.

cpu queue threshold number max number of messages queued at the application processors’s in-
coming message queue.

cpu queue threshold size max cumulative size of messages in bytes queued at the application
processors’s incoming message queue.

cpu queue threshold number max number of messages in the incoming message queue of commu-
nication processor.

rcp queue threshold number max number of messages in the incoming-message-queue of commu-
nication processors.

rcp queue threshold size max cumulative size of messages in bytes in the incoming-message-
queue of communication processors.

net queue threshold number max number of transient messages in the network.

net queue threshold size max cumulative size of transient messages in bytes in the network.

latency-fixed no random variations in the network latency (α)

latency-rand network latency (α) is incremented by a random value distributed exponentially.
The first number after the keyword is the mean of the exponential distribution. The second
number is the initial seed vbalue for the random number generator.

processor scale The simulator scales the measured time execution of code-blocks by this value.

periodic interval Converse has periodic checks for various purposes. This is the time on seconds
those checks are called.

4 EXECUTING CONVERSE/CHARM/CHARM++ PROGRAMS 13

#latency parameters
cpu_recv_cost 1E-6 1E-7
cpu_send_cost 1E-6 1E-7
rcp_cost 1E-3 1E-7
scp_cost 1E-6 1E-7
net_cost 1E-6 1E-7

#capacity parameters
choose one
cpu_nolimit
#cpu_queue_threshold_number 100000
#cpu_queue_threshold_size 100000

#choose one
scp_nolimit
#scp_queue_threshold_number 100000
#scp_queue_threshold_size 100000

#choose one
rcp_net_nolimit
#rcp_queue_threshold_number 100000
#rcp_queue_threshold_size 100000
#net_queue_threshold_number 100000
#net_queue_threshold_size 100000

#random variations in latency
#choose one
latency-fixed
#latency-rand 0.0001 123456

processor_scale 1.0
periodic_interval 0.1

Figure 1: A sample configuration file for the simulator

4 EXECUTING CONVERSE/CHARM/CHARM++ PROGRAMS 14

4.2 Command Line Options

A Charm program accepts the following command line options:

+pN Run the program with N processors. The default is 1. Note that on some nonshared
memory machines, e.g., nCUBE/2, the user must specify the number of processors using the
command provided for that machine (e.g. xnc on the nCUBE/2). In such cases the +p
option is ignored.

+ss Print summary statistics about chare creation. This option prints the total number of chare
creation requests, and the total number of chare creation requests processed across all pro-
cessors.

+cs Print statistics about the number of create chare messages requested and processed, the
number of messages for chares requested and processed, and the number of messages for
branch office chares requested and processed, on a per processor basis. Note that the number
of messages created and processed for a particular type of message on a given node may not be
the same, since a message may be processed by a different processor from the one originating
the request.

user options Options that are be interpreted by the user program may be included after all the
system options. However, user options cannot start with +. The user options will be
passed as arguments to the user program via the usual argc/argv construct to the main
entry point of the main chare. Charm system options will not appear in argc/argv.

4.2.1 Additional Uniprocessor Command Line Options

The uniprocessor versions can be used to simulate multiple processors on a single workstation. Any
number of processors between 1 and 32 can be simulated by using the +p option, limited only
by the available memory on the uniprocessor workstation. By default, the uniprocessor versions
handle a single message from each processor, going in order from processor 0 thru P − 1 (where P
is the number of processors) repeatedly.

4.2.2 Additional Network Command Line Options

The following ++ command line options are available in the network version:

++debug Run each node under gdb in an xterm window, prompting the user to begin execution.

++debug-no-pause Run each node under gdb in an xterm window immediately (i.e. without
prompting the user to begin execution).

++maxrsh Maximum number of rsh’s to run at a time.

++resend-wait Timeout before retransmitting datagrams (in msec).

++resend-fail Timeout before retransmission fails (in msec). This parameter can help the user
kill “runaway” processes, which may not be killed otherwise when the user interrupts the

4 EXECUTING CONVERSE/CHARM/CHARM++ PROGRAMS 15

program before it completes execution. Currently a bug exists in the network version that
may cause programs to terminate prematurely if this value is set too low and scanf operations
are being performed.

++nodelist File containing list of nodes.

If using the ++debug option, the user must ensure the following:

1. xterm, xdpyinfo, and gdb must be in the user’s path.

2. The path must be set in the .cshrc file, not the .login file, because rsh does not run the
.login file.

3. The nodes must be authorized to create windows on the host machine (see man pages for
xhost and xauth).

	Introduction
	Installing Converse, Charm, and Charm++
	Security Issues
	Reducing disk usage
	Using more than one version of Charm on the same Machine

	Compiling Converse, Charm, and Charm++ Programs
	Executing Converse/Charm/Charm++ Programs
	Running with the simulator
	Command Line Options
	Additional Uniprocessor Command Line Options
	Additional Network Command Line Options

