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Chapter 1

Introduction

1.1 CthThreads

The CthThread package, like most thread packages, provides basic functionality for creating threads, de-
stroying threads, yielding, suspending, and awakening a suspended thread. In addition, it provides facilities
whereby you can write your own thread schedulers.

Figure 7?7 demonstrates how to write a simple program that creates CthThreads. The CthCreateMigratable
is used and it takes a handler, an argument pointer, and the stack size for the thread. This is demonstrated
in the initThreads function on line number 43. Once the threads are created, they are pushed on the sched-
uler queue with the CthAwaken call, which only takes the CthThread as an argument. On being scheduled,
the handler function is called.

In the example, each thread then calls CthYield, which directs control back to the scheduler and pushes
the thread back onto the queue. Then in a loop, each thread calls CthYieldPrio NUM_YIELD times, with
the queuing strategy and necessary parameters. The threads call this with priority 0 and 1, lower integers
(but non-negative) indicating higher priority. The effect of yielding with priority is that the higher priority
thread on the queue has precedence over the other threads and hence will be scheduled first, based on the
greedy decision the scheduler makes.

After this loop completes, the threadDone is called by each thread, which increments a counter and quits
the program when all threads are done.
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#include <converse.h>

#include <stdlib.h>

CpvDeclare (int , msgSize );

CpvDeclare (int , exitHandler );

CpvDeclare (int ,nodeOHandler );

CpvDeclare (int ,nodelHandler);

void startRing ()

{
char *msg = (char *)CmiAlloc(CpvAccess(msgSize));
#((int *)(msg+CmiMsgHeaderSizeBytes)) = CpvAccess(msgSize);
CmiSetHandler (msg, CpvAccess (nodelHandler));
CmiSyncSendAndFree (1, CpvAccess(msgSize), msg);

}

void ringFinished (char *msg)

{
CmiFree (msg);
//exit
void *sendmsg = CmiAlloc(CmiMsgHeaderSizeBytes);
CmiSetHandler (sendmsg , CpvAccess(exitHandler));
CmiSyncBroadcastAllAndFree (CmiMsgHeaderSizeBytes ,sendmsg );

//We finished for all message sizes. Exit now
CmiHandler exitHandlerFunc(char xmsg)

CmiFree (msg);
CsdExitScheduler ();
return 0;

}
//Handler on Node 0
CmiHandler nodeOHandlerFunc (char smsg)
{
ringFinished (msg);
return 0;

}

CmiHandler nodelHandlerFunc(char smsg)

CpvAccess(msgSize) = *((int x)(msg+CmiMsgHeaderSizeBytes));
CmiSetHandler (msg, CpvAccess (nodeOHandler));
CmiSyncSendAndFree (0,CpvAccess(msgSize) ,msg);

return 0;

CmiStartFn mymain ()
{
CpviInitialize (int , msgSize);
CpvAccess(msgSize)= 512 + CmiMsgHeaderSizeBytes;
Cpvlinitialize (int ,exitHandler );
CpvAccess(exitHandler) = CmiRegisterHandler (( CmiHandler) exitHandlerFunc);
Cpvlinitialize (int ,node0OHandler );
CpvAccess(nodeOHandler) = CmiRegisterHandler ((CmiHandler) nodeOHandlerFunc);
Cpvlinitialize (int ,nodelHandler );
CpvAccess(nodelHandler) = CmiRegisterHandler ((CmiHandler) nodelHandlerFunc);
if (CmiMyPe() = 0)
startRing ();
return O;

int main(int argc,char xargv][])

{
Converselnit (arge ,argv,( CmiStartFn)mymain,0,0);
return O;

Figure 1.1: A Pingpong Example using Converse Handler
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#include <stdio.h>
#include "converse.h"

#define HIGH_PRIO O
#define LOW_PRIO 1
#define NUM_YIELD 10

int endCounter = O;

//determine completion based on threads calling it
void threadDone() {

endCounter++;

if (endCounter == 2) CsdExitScheduler();
}

//worker function for workerl, yields with a low priority
void workeriWork(void* msg) {
printf ("start workeri\n");
CthYield();
printf ("workerl resumed first time\n");
unsigned int prio = LOW_PRIO;
for(int i = 0; i < NUM_YIELD; i++) {
CthYieldPrio (CQS_QUEUEING_IFIFO,0,&prio);
printf ("workerl resumed %dth time\n",i);
}
threadDone () ;
}

//worker function for worker2, yields with a high priority
void worker2Work(void* msg) {
printf("start worker2\n");
CthYield();
printf ("worker2 resumed first time\n");
unsigned int prio = HIGH_PRIO;
for(int i = 0; i < NUM_YIELD; i++) {
CthYieldPrio(CQS_QUEUEING_IFIFO,0,&prio);
printf ("worker2 resumed %dth time\n",i);
}
threadDone () ;

//create two worker threads and push them on scheduler Q

void initThreads(int argc, charx argv[]) {
printf("called initThreads\n");
CthThread workerl = CthCreateMigratable((CthVoidFn)workeriWork, 0, 160000);
CthThread worker2 = CthCreateMigratable((CthVoidFn)worker2Work, 0, 160000) ;
CthAwaken(worker1l); CthAwaken(worker?2);

}

int main(int argc, char* argv[]) {
ConverselInit(argc, argv, initThreads, 0, 0);

}

Figure 1.2: CthThread Example
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